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Abstract: Membrane filtration equipment was used to evaluate zirconium and

hafnium separation efficiency by a membrane separation process. High rejection of

Zr and Hf species in aqueous solution were obtained with nanofiltration and

ultrafiltration membranes. This high rejection could be explained by the formation

of high molecular weight polynuclear species. Enhanced transportation across the

nanofiltration and ultrafiltration membranes was observed when aminocarboxylic

ligands, like EDTA, were introduced in the solution. This enhancement could be

explained by a depolymerization process of the polynuclear complexes induced by

the ligands. The rejection of Zr and Hf was markedly influenced by the counter

anions and the EDTA/metal ratio. By using Zr and Hf oxynitrates instead of

oxychlorides a difference of rejection of up to 20% was observed for Zr and Hf
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indicating that the membrane separation process could be an alternative process for

Zr and Hf separation.

Keywords: Zirconium, hafnium, separation, nanofiltration

INTRODUCTION

Zirconium has a very low absorption cross-section for thermal neutrons and is

therefore used for nuclear energy applications such as cladding of nuclear fuel

rods. However, hafnium has a good absorption cross-section for thermal

neutrons (almost about 600 times that of zirconium) and is used as control rods

in the reactors. Thus the presence of one element, even in trace quantities, with

the other could exert a profound influence on the nuclear properties of the

system. However, zircon sand (ZrSiO4), the major mineral for zirconium metal

production, contains 1% hafnium. There is a substitution of Hf into the Zr sites

of the mineral lattice. In part 1 and 2 of this set of papers regarding the Zr and

Hf separation, liquid/liquid and solid/liquid extraction have been reviewed and

studied (1, 2). Numerous alternative processes have been proposed for the sepa-

ration of Hf from Zr, like the flotation technique (3, 4), crystallization of

potassium fluorozirconate (5), and anhydrous Zr-Hf separation techniques

(6, 7). However, these processes have not been applied on a commercial scale

with the exception of the fractional cristallization process (5) and extractive dis-

tillation of zirconium and hafnium tetrachloride in molten potassium chloride-

aluminum chloride (Cezus process) (8–10).

Membrane processes, particularly nanofiltration (NF) and ultrafiltration

(UF), have been found to be very useful in recent years in wastewater treatment

and drinking water production (11). The ability of membrane processes for the

rejection (12–14) or fractionation of mono- and multi-valent cations (15, 16)

leads the way to potential applications for ion separation. To increase the ion sep-

aration, the NF process can be associated with a preliminary selective complexa-

tion step of the target ions with water soluble ligands. Thus, the resulting

complexes could be rejected by the membrane, whereas the non-complexed

ions pass through it. It is this principle of nanofiltration assisted by complexation

(17–21) which was applied to various ion separations.

To understand the separation characteristics of Zr and Hf species under

the conditions of membrane processes and hence to evaluate these processes

for the separation of these elements, experiments were conducted using

different membranes with varying molecular weight cut-offs (MWCO). The

effect of a water-soluble chelating agent and counter-ion on the Zr and Hf

rejection by nanofiltration and ultrafiltration membranes were then evaluated.

EXPERIMENTS

The mixture of zirconium (IV) and hafnium (IV) chloride (Zr/
(ZrþHf) ¼ 0.71 molar ratio) was provided by CEZUS. The preparation of
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zirconyl and hafnyl(IV) nitrate hydrate from ZrCl4/HfCl4 (Zr/
(ZrþHf) ¼ 0.71 molar ratio) was made according to described procedure

(22). The aqueous phases were prepared by dissolving the Zr/Hf mixture in

aqueous solution. The pH of the solutions was adjusted by addition of

concentrated hydrochloric or nitric acid. Zr and Hf analysis was carried out

by ICP-AES spectrometry with a SpectroD ICP spectrometer.

Ethylenediaminetetraacetic acid (EDTA) and Triethylamine hydrocho-

ride (TEA-HCl) (Aldrich) were used as received.

Membrane experiments have been performed with a lab-scale membrane

cell where the schematic flow diagram of the system has been previously

described (16). The nanofiltration organic membrane Desal G10 is a thin

film composite membrane manufactured by Osmonics. The membrane area

is 150 cm2 and the MWCO is 2500 Da (23). The active layer of the G10

membrane (1.2 mm) is made from polyamide. The spectra, used to identify

functional groups, were obtained with an attenuated total refractive Fourier

transform infrared (ATR-FTIR) spectrophotometer (Bruker Equinox 55)

equipped with a diamond ATR unit (24). Before starting experiments, the

membrane is activated and conditioned as already described (16). The ultrafil-

tration inorganic membranes, Pall 1 and Pall 5, are tubular membranes man-

ufactured by Pall Exekia. The tubular membrane area is 50 cm2 and the

MWCOs are 1 and 5 kDa, respectively.

The feed is kept at a constant composition during the experiments by

totally recycling the permeate and the retentate. The rejection (R %) of a

substance i was defined according to Eq. (1):

Rið%Þ ¼ 1�
Cip

Cir

� �
� 100 ð1Þ

where Cir is the concentration of i in the retentate and Cip is the concentration

of i in the permeate. The ability of a solute to pass through the membrane

(transmission) can be expressed according to Eq. (2):

Tið%Þ ¼
Cip

Cir

� 100 ¼ ð1� RiÞ � 100 ð2Þ

The separation selectivity of two solutes by the membrane can be represented

by the ratio of their transmissions. Thus the selectivity of the separation of

compounds i and j can be defined according to Eq. (3):

Si=j ¼
Ti

Tj

ð3Þ

where Ti represents the transmission of i.
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RESULTS

Zr and Hf Rejection by NF and UF Membranes

High rejections of Zr and Hf with NF and UF membranes were achieved from

mixtures of the two elements (Table 1). This high rejection could be explained

by special hydrolysis chemistry of Zr(IV) and Hf(IV) compared to other

heavy-metal ions like Th(IV) or Pu(IV) (25, 26). The chemistry of Zr (and

by extension of Hf) in aqueous media is dominated by the complexation of

Zr4þ with OH2 (27). Zr and Hf are chemical species that show a high

tendency to polymerize in aqueous solutions through reactions that depend

on experimental conditions, such as pH, concentration, nature, and concen-

tration of the mineral acid, age of the solutions and temperature (26, 28).

For both metals, the formation of polynuclear hydroxo-bridged compounds

in acidic solutions ([Hþ] ¼ 1–2 mol L21) occurred even in very dilute

solutions (1023–1024 mol L21) (25, 29). The presence of tetranuclear aqua-

hydroxo-complexes, i.e. [Zr4(OH)8(H2O)16]8þ, in acidic aqueous solutions

has been confirmed both by proton NMR, Raman spectrometry (26).

Furthermore, recently, a crystal structure of Zr and Hf tetranuclear aqua

hydroxo complexes was obtained from MOCl2 in 2 M HCl in the presence

of macrocyclic cavitand cucurbituril (M55Zr or Hf) (30). The tetranuclear

cation [M4(OH)8(H2O)16]8þ forms a slightly distorted square with Zr or Hf

at all corner. The length of the side is close to 3.5 Å (30), and size difference

between Zr and Hf tetranuclear cations is less than 0.5%.

The aqueous chemistry of Zr has been more extensively studied than that

of Hf. However, due to their close chemical similarity, the expected behavior

of the dissolved Hf can often be deduced from the knowledge of analogous Zr

solutions. Thus, these oligomeric charged species are highly rejected by NF

and UF membranes. As expected lower rejection of Zr and Hf were found

using Pall 5 membranes with a MWCO of 5 KDa (Table 1).

Table 1. Rejection of Zr and Hf oxychloride as the function of

the membrane studied

Membrane

Rejection (%)

Zr Hf

Desal G-10a 99 + 2 98 + 5

Pall 1b 96 + 2 95 + 2

Pall 5b 22 + 2 23 + 2

apH ¼ 2; [Zr] ¼ 0.126 mmol/L; [Hf] ¼ 0.048 mmol/L

DP ¼ 1 bar, retentate flux: 9L/min., 208C.
bpH ¼ 1; [Zr] ¼ 27 mmol/L; [Hf] ¼ 11 mmol/L DP ¼ 0.5

bar, retentate flux: 9L/min., 208C.
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Influence of the Chelating Agent on Zr and Hf Rejection

Aminocarboxylic ligands, like EDTA, are known to form complexes with a

great variety of heavy-metal ions (31). Aminocarboxylate ligands bind

strongly to Zr(IV), and complexes have been reported, some of which have

been crystallized from aqueous solutions (32). Zr(IV) and Hf(IV)

complexes with EDTA are characterized by a high thermodynamic stability

(Log K ¼ 28.1 and log K ¼ 29.5 for Zr and Hf respectively) (31) even if

the behaviour of Zr and Hf differs in macro- and microconcentrations (33).

Therefore, we studied the influence of the organic chelating agent on the

rejection of Zr and Hf with NF and UF membranes.

Fig. 1a shows the rejection of Zr and Hf with increasing concentration of

EDTA with the inorganic Pall 1 membrane. The rejection of Zr and Hf

decreased from 95% to 35% on increasing EDTA/metal ratio. Thus, the

enhancement of the transport of Zr and Hf across the membrane induced by

EDTA was demonstrated. This could be explained by a depolymerisation

process of the tetranuclear complexes induced by EDTA according to Eq. (4).

½Zr4ðOHÞ8�Cl8 þ n EDTA� n½EDTA � Zr� þ ½Zr4�nðOHÞ8�2n�Cl8�2n

þ 2nHClþ 2nH2O ð4Þ

with n ¼ 1 to 4.

The EDTA/Zr or Hf complexes thus formed have a molecular weight and

charge lower than the tetranuclear aqua-hydroxo-complexes and the transport

of Zr or Hf across the membrane could thus be improved.

Membrane transport (12, 34–37) could be modified by numerous factors,

and among them, organic solute interactions with the membrane are believed

to play a crucial role (38). To confirm the depolymerization hypothesis (Eq. 4),

we studied the influence of non-chelating charged organic salts on Zr and Hf

rejection. The same experiment was performed using triethylamine hydrocho-

ride (TEA-HCl) as a non-chelating organic solute (Fig. 1b). Under these con-

ditions, the rejection of Zr and Hf slowly decreased from 95% to 85% with

increasing TEA-HCl/metal ratio. For an organic salt/metal ratio of 0.3 a

Zr/Hf rejection of 35% and 92% were obtained with EDTA and TEA-HCl,

respectively. Thus, the decrease of the rejection could be attributed to a depo-

lymerization process according to Eq. (4.) However, under these conditions,

no difference between the rejection of Zr and Hf was observed.

The same trend was observed with the organic NF membrane (Fig. 2). As

expected from the MWCO of the organic membrane the rejection of Zr or Hf

was higher than that observed with inorganic membranes. The rejection for Zr

and Hf was 65% with an EDTA/total metal ratio of 1 and under those

conditions no Zr/Hf separation was observed.
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Figure 1. Rejection coefficient of Zr and Hf oxychloride (Zr/(ZrþHf) ¼ 0.71) on

inorganic membrane Pall 1 as a function on EDTA a) or TEA b)/[ZrþHf] metal

ratio. pH ¼ 1, [Zr] ¼ 27 mmol/L, [Hf] ¼ 11 mmol/L, DP ¼ 0.5 bar, retentate flux:

9 L/min., 208C.
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Influence of Counter-Ion on Zr and Hf Rejection by NF Membranes

The counter-ion influence on Zr and Hf rejection was then studied. The Zr and

Hf oxynitrates were prepared from the mixture of Zr and Hf tetrachloride

according to a published procedure (22). The Zr and Hf oxynitrates were

then dissolved in water and the pH was adjusted with nitric acid to 2.

Figure 3 shows the rejection of Zr and Hf with increasing concentration of

EDTA with the organic G10 membrane.

The rejection of Zr and Hf oxynitrate is still high with the organic Desal G10

membrane (.98%) as previously reported in the hydrochlorohydric media. The

rejection of Zr and Hf decreased with increasing EDTA concentration, but in the

case of Zr and Hf oxynitrate, the transport across the membrane was higher for

Hf than for Zr. This could be explained by the difference between the thermo-

dynamic stability constants of EDTA with Zr or Hf (31). Thus Hf, which has

a higher stability constant with EDTA, was preferably depolymerized and

transported across the membrane. The Hf/Zr selectivity calculated according

to Eq. (3) was higher than 2.5 for an EDTA/metal cation ratio of 0.2.

CONCLUSION

Taking into account the experimental observations reported above, Zr and Hf

polynuclear hydroxo-bridged species are highly retained by nanofiltration and

Figure 2. Retention coefficient of Zr and Hf oxychloride (Zr/(ZrþHf) ¼ 0.71) on

the organic membrane Desal G10 as a function of EDTA/[ZrþHf] ratio pH ¼ 2,

[Zr] ¼ 27 mmol/L, [Hf] ¼ 11 mmol/L, DP ¼ 1 bar, retentate flux: 9 L/min., 208C
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ultrafiltration membranes. In a hydrochloric aqueous solution, the introduction

of a soluble organic ligand with a high thermodynamic stability constant

towards Zr and Hf (i.e. EDTA) enhanced the transport of both Zr and Hf

across the membranes. The same trend was observed in nitric solution

media, but [EDTA-Hf] complexes are formed preferentially to [EDTA-Zr]

complexes and thus a Hf/Zr selectivity higher than 2.5 was obtained. The

data obtained with the oxynitrate of Zr and Hf demonstrates that the ligand-

enhanced separation of Zr and Hf from aqueous solution using membranes

is applicable.
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